Sizes of the I.V. Cannula

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Length</th>
<th>Flow Rate (ml/min)</th>
<th>Uses</th>
<th>Nursing Consideration</th>
</tr>
</thead>
</table>
| 14G | ORANGE| 45 | 250-300 | • Used for adolescent and adult major surgery and trauma
• infusion of large amount of fluids or colloids | • Painful insertion
Required large insertion |
| 16G | GREY | 45 | 150-240 | • adolescent and adult major surgery and trauma
• infusion of large amount of fluids or colloids | Painful insertion
Required large insertion |
| 18G | GREEN | 45 | 100-120 | • adolescent and adult major surgery and trauma
• infusion of large amount of fluids or colloids | Commonly used |
| 20G | PINK | 32 | 55-80 | • Older children, adolescent and adult
• Ideal for I.V. infusion and blood infusion
• Medication administration
• Emergency management | • Easy to insert into small, thin, fragile veins
• Difficult to insert into though skin |
| 22G | BLUE | 25 | 22-50 | • Older children, adolescent and elderly adult
• I.V. infusion with moderate flow rates
• Medication administration | • Insertion to though skin is difficult |
| 24G | YELLOW| 19 | 23 | • Infant toddler, older children
• Major surgery and trauma among children
• Can administer fluids and medication | Less painful
Insertion to though skin is difficult |
| 26G | VIOLET| 19 | 10-15 | • Neonate, infant and elderly adults
• Suitable for infusion but infusion rate is low | Insertion to though skin is difficult and less painful |

Flow rate calculation:

When calculating the flow rate of IV solutions, remember that the number of drops required to deliver 1 ml varies with the type of administration set. Administration sets are of two types:

- **Macro drip set** (delivers 10-20 drops/ml)
- **Micro drip set** (60 drops/ml).

\[
\text{Flow rate} = \frac{\text{Volume of infusion in ml}}{\text{Time of infusion in minutes}} \times \text{Drip factor (in drops/ml)}
\]